Towards an operational oceanography tool for fisheries: predicting spawning habitat of Bluefin tuna in Western Mediterranean

Balearic Islands Coastal Observing and Forecasting System

BLUEFIN TUNA PROJECT

Participants:

Alvarez-Berastegui D., Juza M., Mourre B., Tintoré J.

Alemany F., Balbin R., Aparicio A., Reglero P., Lopez-Jurado J.L., Hidalgo M., Tugores M.P., Rodríguez J.M., García A.

Pascual A.

Ciannelli L.

INTRODUCTION

Migration patterns along the year (Eastern Stock)

Winter in feeding areas
Summer in spawning areas

1- Within the Mediterranean, the <u>Balearic Sea</u> is one of the most relevant spawning area.

2- After reproductive season adult Bluefin tuna return to Atlantic feeding areas

Aranda et al, PONE 2013

INTRODUCTION

In the Balearic Sea, fisheries target aggregations of adult Bluefin tuna during reproduction

- -Bluefin tuna support a relevant economic activity
- Mediterranean catches have a value over 226 million dollars
- -More than 3.500 direct jobs (Sumaila and Huang, 2010)

INTRODUCTION

Overfishing: Temporal evolution of the catch (2000-2011)

Actual management of Bluefin tuna:

- 1- Fishing quota (after abundance indices calculated from adult catches)
- 2- Minimum fish length regulations

ACTUAL MEASUREMENTS TO CONTROL TUNA POPULATIONS
DO NOT INCLUDE ENVIRONMENTAL VARIABILITY

GOAL

Take advantage of new Operational Oceanography tools to introduce environmental variability on Bluefin tuna management and conservation

Objectives:

- 1- Identify the relations between Bluefin tuna reproductive ecology and regional mesoscale oceanography, and identifying key environmental variables
- 2- Selected operational oceanography products and predict spawning areas to propose alternative management approaches (applications)

METHODS

1- How spawning of bluefin tuna depends on regional mesoscale oceanography + identify key environmental variables

5 years of data 2001 to 2005

Identification of spawning
Habitat from larval abundance

Oceanography from CTD

Spawning habitat = f (environmental variables ,CTD)

KEY ENVIRONMENTAL VARIABLES

METHODS

2- Selected operational oceanography products and predict spawning areas

General aditive models are fitted agains environmental data from Operational Oceanography to obtain **predictive spawning habitat maps**

RESULTS

1- How spawning of bluefin tuna depends on regional mesoscale oceanography + identify key environmental variables

Key Environmental Variables

- -Chlorophyll-a
- -Sea surface temperature
- -Sea Surface salinity
- -Sea Surface geostrophic velocities

-Spatial gradients geostrophic velocities

GAM; decision trees; NNS

-Bluefin tuna reproductive ecology is highly dependent on regional mesoscale oceanography

Alemany et al 2010, Mulhing et al 2013, Reglero et al 2012, Alvarez-Berastegui 2014

RESULTS

2- Identify operational data sources giving information about identified variables

From remote sensing

Chlorophyll-a

Sea Surface geostrophic velocities

Spatial gradients of geostrophic velocities at specific scales

(Alvarez-Berastegui et al 2014)

dataset-oc-med-chl-viirs_s-I4-chl_1km_weekly-rt-v02 mass_concentration_of_chlorophyll_a_in_sea_water Time: 2014-06-25T00:00:00.000Z

From hydrodinamic models

Zonal sea surface temperature

Zonal sea surface temperature increment

Sea Surface salinity NOT SELECTED

RESULTS

2- Modeling <u>SPAWNING HABITAT</u> from operational oceanography data sources

(GAM) Spawning habitat =

S1(long, lat) +S2(hour)+ S3(chla) + S4(SSTZ, SSTincrement) + S5 (GVEL, gradGVEL)

RESULTS: CROSS-VALIDATION

Applications to management

1-Propose spatial planning management approaches

Spawning habitat mapping

Selection of closure areas
To reduce accidental catch

http://www.theg.ca/hooking-a-big-one/

Applications to management

2- Improve indices of adult abundance from larval data

+ Adult abundances->+Larval abundances

Larvae abundance in a year

Habitat standardized LARVAE abundance indices

IMPROVING 15% C.V. (Ingram et al. ICCAT 2013)

Closing remarks

- 1- Spawning ecology of bluefin tuna highly dependent on regional mesoscale oceanography
- **2-** Quality of input **Operational Oceanography products** (As sea surface salinity) determine applicability to fisheries management

3- Operational Oceanography products:

- -Improve actual techniques for evaluation of adult stock abundance
- -Open new ways for approaching Bluefin tuna management (spatial management)

REFERENCES

Alvarez-Berastegui D, Ciannelli L, Aparicio-Gonzalez A, Reglero P, Hidalgo M, et al. (2014) Spatial Scale, Means and Gradients of Hydrographic Variables Define Pelagic Seascapes of Bluefin and Bullet Tuna Spawning Distribution. PLoS ONE 9(10): e109338. doi:10.1371/journal.pone.0109338

Aranda G, Abascal FJ, Varela JL, Medina A (2013) Spawning Behaviour and Post-Spawning Migration Patterns of Atlantic Bluefin Tuna (*Thunnus thynnus*) Ascertained from Satellite Archival Tags. PLoS ONE 8(10): e76445. doi:10.1371/journal.pone.0076445

Ingram G.W., Alemany F., Alvarez D. and García A., 2012, Development of indices of larval bluefin tuna (Thunnus thynnus) in the western Mediterranean sea. DOC: SCRS/2012/164, REPORT OF THE 2012 ATLANTIC BLUEFIN TUNA STOCK ASSESSMENT SESSION, 2012 SCRS: BFT Stock Assess. Meeting Report, Madrid, Spain – September 4 to 11, 2012

Ingram Jr GW, Alemany F, Alvarez-Berastegui D, García A (2013), Development of indices of larval bluefin tuna (Thunnus thynnus) in the Western Mediterranean Sea. ICCAT, Collect Vol Sci Pap 69: 1057-1076.

Muhling B. A., Patricia Reglero, Lorenzo Ciannelli, Diego Alvarez-Berastegui, Francisco Alemany, John T. Lamkin, Mitchell A. Roffer, A comparison between environmental characteristics of larval bluefin tuna (Thunnus thynnus) habitat in the Gulf of Mexico and western Mediterranean Sea, Marine Ecology Progress Series, Accepted, 2 may, 2013

Reglero P., L. Ciannelli, D. Alvarez-Berastegui, R. Balbín, J.L. Lopez-Jurado, F. Alemany, Geographically and environmentally driven spawning distributions of tuna species in the western Mediterranean Sea, Journal: Marine ecology progress series, Volumen: 463:273-284 pp.

Sumaila, U. R., & Huang, L. (2010). Managing Bluefin tuna in the Mediterranean Sea. Economic Research Forum, Working paper No.576